Chaocipher: Exhibit 6 by Jeff Calof¹ & Moshe Rubin² (6 January 2015)³

The Chaocipher timeline has, until now, reflected five distinct "Exhibits", or challenge messages. The first four Exhibits were created by John F. Byrne and presented in the final chapter of his autobiography *Silent Years: An Autobiography with Memoirs of James Joyce and Our Ireland.* Byrne's Exhibits were unique for a challenge message as they didn't ask for a decipherment to plaintext (except for a singular short phrase). Rather, Byrne provided all the plaintext and challenged his readers to determine his encipherment method used to create the ciphertext. His challenge was never solved and the solutions to his four Exhibits, i.e. the encipherment schema used, remained a mystery for Exhibits 1 & 4 until 2010 (following the donation of Byrne's materials to the National Cryptologic Museum (NCM) by his daughter-in-law, Patricia Byrne, and the publication of the classic Chaocipher algorithm by Moshe Rubin).

The encipherment schemas for Exhibits 2 & 3 were also part of the donated materials. Jeff Calof discovered Byrne's hand-written notes for those Exhibits on a visit to the NCM in May, 2013 but, as they were not clearly laid out, the mystery continued until Esa Peuha independently arrived at the solution (which differed from the algorithm used for Exhibits 1 & 4) and published his results in October, 2013.

Chaocipher Exhibit 5 had a different genesis. Cryptologia founding editors Louis Kruh and Prof. Cipher Deavours met with John Byrne (son of Chaocipher creator John F. Byrne) in 1989 and were the first verified non-family individuals to learn the classic algorithm in nearly 35 years. Though unable to reveal the encipherment schema due to a non-disclosure agreement, they published a set of 3 challenge messages as Exhibit 5 in their article "Chaocipher Enters the Computer Age When its Method is Disclosed to *Cryptologia* Editors," *Cryptologia*, 14(3):193–197. Unlike the first four Exhibits, the messages of Exhibit 5 divulged no plaintext though Kruh and Deavours did identify their source material. This too went unsolved for 23 years until Jeff Calof found their solution document at the NCM containing the plaintext along with their takeoff\keying patterns and encipherment algorithm (a variant of Byrne's). With co-authors Moshe Rubin and Jeff Hill, he published the article "Chaocipher Exhibit 5: History, Analysis, and Solution of *Cryptologia's* 1990 Challenge", *Cryptologia*, 38(1):1-25.

With the five known Chaocipher Exhibits all in the "solved" column, it would seem that Byrne's Chaocipher has exhausted its mysteries. Yet such is not the case, for along with the Kruh and Deavours's solution document for their *published* Exhibit 5, an earlier draft article (never published) with an entirely separate set of challenge messages was discovered at the NCM. Also written by Kruh and Deavours, it differs markedly from the Exhibit 5 they eventually presented in *Cryptologia*. As an homage to, and continuation of, the Chaocipher timeline Calof, Hill, and Rubin have christened it going forward as "Exhibit 6".

Beginning with three short explanatory paragraphs (with numerous misspellings of Byrne's name), it then leads into a list of 50 short "in-depth" encipherments, each about 25-30 characters in length. By comparison, the published Exhibit 5 consists of three "in-depth" encipherments running from 121 to 162 characters. Unlike the discovered solution document for the published Exhibit 5, this document does not provide the keyword, takeoff patterns, or encipherment schema used for the 50 rows, nor does it provide its plaintext source.

The following photographs are of the actual, printed documents prepared by Lou Kruh and Prof. Cipher Deavours as found in the donated Byrne Family files at the National Cryptologic Museum in Ft. Meade, MD. Take note that certain letters (e.g., D & O or U &V) may appear nearly identical to the naked eye.

¹ Jeff Calof's email address: jcalof@yahoo.com

² Moshe Rubin's email: mosher@mountainvistasoft.com

³ This paper can be found at <u>http://www.chaocipher.com/chaocipher-024.htm</u>

As was discovered with the published Exhibit 5, in several instances those letters were juxtaposed between the printed output and the Cryptologia publication. The "VF 109-11" in the upper-right corner is not by Kruh and Deavours but the NCM's own marking reflecting their filing system.

VF109-11

THE CHADCIPHER: EXHIBIT 5

by

C.A. Deavours and Louis Kruh

Most readers of Cryptologia and, indeed, most persons interested in cryptography know of J.F. Byrne's famous Chaocipher- that mysterious, tantalizing puzzle that has persistently hung around for decades. [Those unfamiliar with the Chaocipher can read about it in Kahn's <u>The Codebreakers</u> or Greg Mellin's article "J.F. Byrne and the Chaocipher", (Cryptologia, Vol 3, #3, 1979)].

Mr. Bryne worked very hard for years trying to garner support for his cipher system. He contacted virtually everyone in Washington D.C. or elsewhere who might be of aid in his efforts to promote the cipher. Byrne demonstrated the system several times to officials. William F. Friedman was one of those whom Bryne sought to persuade about the virtues of his cryptographic device. Correspondence between Bryne and Friedman covered many years with Friedman becoming more and more curmudgeonly about the entire subject as the years passed.

In a letter of 7 September 1922, Friedman responded to a previous question of Byrne's about what type of material would be needed to solve the Chaocipher system. Friedman's response was "With respect to the amount of material I consider necessary for the decipherment of your system, I would say that a series of fifty messages of approximately twenty-five words each might be sufficient, providing they were enciphered upon a machine operating in principle exactly like the one I had." We believe that Friedman meant to say "letters" instead of "words" in this last sentence. At any rate, the following 50 lines are an "in depth" specimen of Chaocipher. The plaintext is English. Encipherment was done by computer and can thus be considered error free. The reader may consider this as Exhibit 5, continuing from where Mr. Bryne left off in his book, <u>The Silent</u> <u>Years</u>.

CHAOCIPHER: EXHIBIT 5

1:	TIHUL	RZNXN	SDGQL	MYGNU	QQAXE	Н
2:	DYRBQ	NNZEG	ZECMZ	MOMKO	AMEBL	HB
3:	XANQD	WXZST	SJMLR	XNSLC	YPDJD	UD
4:	XANQD	WXOAD	JZSYM	DXEQE	LAC	
5;	XMIRE	DOHSJ	HHSNQ	QFHZL	LHZMH	G
6:	TCYXM	XFROW	ACWTY	QEVMF	ITXTO	A
7:	NHCDQ	DEGRG	OMQBD	RKBJX	HRKQN	LPOOD
8:	TIYJD	ICMSR	PTVHB	EUSQD	KVYIT	RWDL
9:	TCQPK	EGAUN	TKMWK	XNBNO	GDUTR	

10;	BCQXD	DGMPE	MKBLT	YUAUQ	DPTJR	JZH	
11:	MSQEJ	KMEYK	JQSXG	QJDHB	YYEKQ	NHX	
12:	YIMEH	ZZRVC	ZAHYZ	VYFZP	JXAFS	GQFE	
13:	DVIIX	LLUBE	LWWQY	LMFOD	QQCSK	KHMQ	
14:	TPUSB	SWAJZ	SPMBH	HTSFO	RXYED	DA	
15:	SYMEZ	WGNPH	QEPLZ	LSZIT	DPYIT		
16:	KMPNS	TOART	TOGSU	JMXR2	KKNJN	UXV	
17:	DVHPA	XKITZN	VSDCO	CILEG	AWONP	LNTXG	
18.	TCVCS	ысоры	LITEDE	EGEXP	TTEHU	CILY	
19.	TLOVI	1 XKGH	UMUAE	TUZHT	WE'ONT .	TI	
201	OKLAF	CKEKN	ITSGV	ATSUL	NTEER	Y	
21.	DURHS	LOCDS	VIOXC	FP07T	DEV		
200	DUTNE	UMEMI	IMCEB	DIMOH	HEVEV	L CBGD	LBD
221	UTCOL	YHOTE	DETEN	MZONC	OWNMT	Y	
24.	TICEY	OMPOT	OGNST	GDZEQ	MEDKC	. Particular	
	OKLNC	ESPEC	ZEIEC	BUXEN	co		
06.	TESEV	GGMUA	YZKSO	LVRER	TYTEM	VEDHK	
07.	DUTTY	TYTEL	PPZYO	YTMRG	NEO	TEDTIN.	
	ALIERU	CELIVE	DTAND	GEZTR	TC		
2001	TCCTC	OLEEN	DELITI	DUDNT	TUPPZ	110	
201	TTOUA	COUPS	E7DVC	UVIIOE	ULIRRS	RUSA	
21.	CVGVE	ZEETT	UGEVE	RIGNC	EMNELL	YOPLIN	
201	TCEED	YCAPM	NTPHE	HENEZ	TNHTK	I DIA	
331	DUTTY	LKBKH		NTUNY	AGULA	774	
34 :	DUTUT	QIXIO	ZUMBU	BLCVH	QC	have been 1	
35:	TCGHV	HI NN.T	TDIKU	FNUNU	THYNE	APTC	
36 :	OKLEX	ONFLE	YDIKI	OHMTH	PULLIM	SH	
37:	TTVNE	LIKTTS	MUDKU	SEZGH	VZEHU	DEEXT	v
38:	BEAEX	POVOV	WAVDG	EBES7	Y THAK	F7	•
39:	DVIOE	GMDMT	RTTEM	BACBT	HOVIN	GTYYN	VY
40:	DTGEW	TSONT	DOAVE	LCRAF	ATYPO	VM	1.4
41:	TTYSS	COLTE	XVINP	07707	MIZOM	TH	
42:	DVIBX	GUEGP	OTOXT	OMDAR	MPPVG	EVTU	
43:	TDAYS	NYRVC	BBBKU	UUDGZ	LIABAA	NATW.	
44:	TCRVE	CCAFR	NDTXR	OTHIX	YZTGG	ODSTR	FENR
45:	YHAPC	NUQLS	MHRBY	MUDER	NDNMC	PDON	PEND
46:	MASXQ	WVXWA	UADTY	BMTTY	VUONN	I DIGIN_	
47:	DVINS	PRNDI	LBUKC	BEFEC	METCH	THU NIT	VUG7
48:	TCONO	QUTHK	TUGHA	LUATE	CTUSO	MO	ANGZ
49:	TCEXT	SZAOK	OVONT	EVH00	TELED	Pill	
50:	BKBBD	COBBL	KYDOR	TTAKE	SKOKP	ZEK	
Sent Sect 1	hard the the bar had	Sar Calling Ind Inc.	N. T. C. Olan	TIME	EUYEN	JRGMD	

Below is a transcription of the 50 rows of ciphertext. Though great care has been taken for accuracy, it is possible those same juxtaposed errors (D vs O, and U vs D) have been introduced by the authors.⁴ Readers are encouraged to verify each row against the photographs before pursuing any cryptanalysis.

1:	TIHUL	RZNXN	SDGQL	MYGNU	QQAXF	H	
2:	OYRBQ	NNZEG	ZECMZ	MOMKO	AMEBL	HB	
3:	XANQD	WXZST	SJMLR	XNSLC	YPDJD	UO	
4:	XANQD	WXOAO	JZSYM	OXEQE	LAC		
5:	XMIRE	DOHSJ	HHSNQ	QFHZL	LHZMH	G	
6:	TCYXM	XFROW	ACWTY	QEVMF	ITXTO	А	
7:	NHCDQ	DEGRG	OMQBD	RKBJX	HRKQN	LPOOD	
8:	TIYJD	ICMSR	PTVHB	EUSQD	KVYIT	RWDL	
9:	TCQPK	EGAUN	TKMWK	XNBNO	GDUTR		
10:	BCQXD	OGMPE	MKBLT	YUAUQ	DPTJR	JZH	
11:	MSQEJ	KMEYK	JQSXG	QJDHB	YYEKQ	NHX	
12:	YIMEH	ZZRVC	ZAHYZ	VYFZP	JXAFS	GQFE	
13:	DVIIX	LLUBE	LWWQY	LMFOD	QQCSK	KHMQ	
14:	TPUSB	SWAJZ	SPMBH	HTSFO	RXYED	DA	
15:	SYMEZ	WGNPH	QEPLZ	LSZIT	DPYIT		
16:	KMPNS	TOABI	TQGSU	JMXRZ	KKNJN	UXV	
17:	DVHPA	XKJZN	VSDCQ	CJLEG	AWONP	LNIXG	
18:	TCYCS	WGOOH	UJRDB	EGFXP	TTRHU	CJLY	
19:	TLQYI	LXKSU	WMWAE	JUZHI	WPQNT	TI	
20:	OKLAE	CKPKN	LTSGY	AISUL	NIFFR	Y	
21:	DVRHS	LOCDS	VJQXC	FPAZT	OFV		
22:	DVINE	VMEMJ	JMCFR	OJMQH	HBVGV	LCBGD	LBD
23:	VISSL	XWQIE	DRIPN	MZONC	OWNMT	Y	
24:	JISRX	QMPQI	QGNSJ	GDZFQ	MEDKC		
25:	OKLNC	FSRRC	ZRIRC	BWXBW	CO		
26:	TPZEY	GGMVA	XZKSQ	LYBEB	TXTRM	YEDHK	
27:	DVIIX	IXIPH	BPZXQ	XTMBG	NEQ		
28:	AHPEV	CEUYH	RTANP	GKZIR	TS		
29:	TCCTS	OLEBN	BFHID	BURNI	IVPPZ	UC	
30:	JISUA	CDUPG	EZPKS	VXUOE	VWBBS	BVSA	
31:	SYGYE	ZEEJJ	VGBYF	BJGNC	BMNRU	XQPUN	
32:	TCRBD	XCAPM	NTPHK	HKNFZ	JNHIK	L	
33:	DVIIX	LKBKH	LUJLY	NIVOY	AGULA	ΖΖΥ	
34:	DVIUT	QJXIO	ZVMRW	BLCYH	QC		
35:	TCGHV	HLNNJ	IDIKU	FNUNU	IHXNR	APTC	
36:	OKLBX	QNFLP	YDIKL	OHMTH	PWUWM	SH	

⁴ In fact, a re-review of these 50 lines by the authors revealed that in the published article "Chaocipher Exhibit 5: History, Analysis, and Solution of *Cryptologia's* 1990 Challenge", two such transcription errors were made (and here now corrected). Line 32, first 5-letter sequence published as TCRBO, and Line 39, second 5-letter sequence published as GMOMT. In both instances, the letter D was incorrectly transcribed as O based on use of scanned copy of actual source document. For this short paper, an enhanced PDF of the photograph taken at the NCM aided in the correct verification.

37:	JIYNE	WKTIS	MLDKV	SFZGH	VZRHV	DBBXJ	Y
38:	BPAEX	PQVQV	WAVDG	EBESZ	XJHAK	FΖ	
39:	DVIQE	GMDMT	RTIEM	BACBT	WQYUU	GTXXN	ΥX
40:	DTGFW	TSCNI	DOAVR	LCPAE	AIXRQ	YМ	
41:	JIYSS	COITP	XYJNP	QZZOZ	MIZOM		
42:	DVIBX	GVFQP	QIQXT	OMDAR	MPBYG	KXTW	
43:	IDAYS	NYRVC	BBBKU	UUDGZ	WABAA		
44:	TCRVF	CCAER	NDIXR	OTHJX	XZTGG	QDSTB	FENB
45:	YHAPC	NUQLS	MHRBY	MVDKR	NDNMC	PDQN	
46:	MASXQ	WVXWA	UAOIV	BMTIX	YWONN		
47:	DVINS	PRNDL	LBUKC	RFEFS	METGM	JNLNT	XHGZ
48:	TCQNO	QUTHK	TVGHA	LVAJS	CIUSQ	MQ	
49:	TCBXI	SZAOK	OYQNT	PKQOD	JKUKP	ZFK	
50:	BKRBO	COBBL	KYOQP	IINKF	EUYEN	JRGMD	

Foundational efforts to decipher these 50 lines have begun but as yet yielded no success. To date, the following has been determined:

- The 50 lines do not appear to have been created based on the same settings (i.e., same keyword and progressive, alternating encipherment wheel patterns) Kruh and Deavours used for their published Exhibit 5. Moshe Rubin attempted to decipher Line 1 using those settings, but no plaintext came through. He also attempted an enciphering operation, using straight alphabets instead; again, the results were negative.
- The 50 lines were probably enciphered based either on the 'classic' Chaocipher algorithm Byrne used for Exhibits 1 & 4, or on Kruh and Deavours's advanced keying algorithm used for Exhibit 5 (see the next section for more details). Given that Kruh and Deavours were not aware of the algorithms used for Exhibits 2 & 3, it is improbable that either of these were used for the Exhibit 6 encipherments.

With no knowledge of the source material, plaintext, or encipherment schema, Exhibit 6 offers students of cryptanalysis the greatest Chaocipher challenge yet. Jeff Calof reached out to Prof. Deavours at his Kean University email address for additional information on its creation but received no reply.

For greater details and a complete overview of Exhibits 5 & 6, see the article "Chaocipher Exhibit 5: History, Analysis, and Solution of *Cryptologia's* 1990 Challenge" by Jeff Calof, Jeff Hill, and Moshe Rubin in Cryptologia Volume 38, Issue 1, 2014 at http://www.tandfonline.com/toc/ucry20/current [3].

For a more cursory overview of the "Chaocipher: Exhibit 5 Solution", see Progress Report 23 at The Chaocipher Clearing House <u>http://www.mountainvistasoft.com/chaocipher/chaocipher-023.htm</u> [4].

Important Information for the Cryptanalyst

Before tackling Exhibit 6, a potential cryptanalyst should be aware of the Chaocipher systems used in challenge exhibits to date. The following table shows the methods used for enciphering the different exhibits.

Exhibit	Method Used	Author	Comments
1	Classic	John E. Byrno	Plaintext letter is always
1		John F. Byrne	found in right alphabet
2	Rogue variant	John F. Byrne	Solved by Esa Peuha,
3	Rogue variant	John F. Byrne	nonstandard variants
4	Classic	John F. Dyrno	Plaintext letter is always
		John F. Byrne	found in right alphabet
5	Advanced		Plaintext letter from right
		Deavours and Kruh	or left alphabets, based on
			takeoff key
6	???	Deavours and Krub	Probably used the Exhibit 5
			advanced method

It turns out that John F. Byrne used one flavor of the Chaocipher system ('classic') for Exhibits 1 and 4, and 'rogue' variants for Exhibits 2 and 3 [2]. In the case of Deavours and Kruh's Exhibit 5, on the other hand, they used a more complex Chaocipher system ('advanced').

Leaving Exhibits 2 and 3 out of the discussion for the moment, it seems probable that Deavours and Kruh enciphered Exhibit 6 using the same 'advanced' system as Exhibit 5 (or a slight variant) to encipher Exhibit 6.

The 'Classic' Chaocipher System

The 'classic' Chaocipher system is identical to the one described in reference [1] and [5]. The major feature to pay attention to is that, when enciphering a message, the plaintext letter is always located in the right alphabet and the ciphertext letter in the left alphabet.

The 'Advanced' Chaocipher System

The 'advanced' Chaocipher system is identical to the 'classic' system except in one important detail: when enciphering a message, the plaintext will be located in either the right or left alphabet, depending on a predetermined 'takeoff key'. The takeoff key is a finite ordered set of two denotations of 'right' and 'left'. The key is used cyclically to decide which alphabet should be used for finding the plaintext letter, with the other alphabet being used to find the ciphertext letter.

A complete description of the advanced Chaocipher system can be found in reference [3], which must be bought from the publishers of Cryptologia. Therefore, we will provide a contrived description of the advanced Chaocipher system for the benefit of the reader.

In the following example we encipher the input text "SENDMONEY". For the initial conditions we provide left and right starting alphabets, the alignment of these two alphabets relative to each other, the left and right zeniths, and, importantly, a plaintext disk pattern ("takeoff key"). Here is the detailed output of enciphering the input text, with the plaintext alphabet dictated by the "takeoff key":

Session options _____ Left starting alphabet: BGSXML, JWODKZAIPRHFVCYOFTUN Right starting alphabet: RYUJBDAKVFGOWIPLCZXENHMTQS Left zenith: В Right zenith: R PT takeoff key: RLRRLLLRRRLLLLRRRRRRLLLLLRRRRRR SENDMONEY Command line input: Mode: encipher Input text has 9 characters 0) leftAlphabet: BGSXMLJWQDKZAIPRHFVCYOETUN0) rightAlphabet: RYUJBDAKVFGOWIPLCZXENHMTQS ((0) Plain disk is the RIGHT disk (0) pt(S) = ct(N)(1) leftAlphabet: NGSXMLJWQDKZABIPRHFVCYOETU rightAlphabet: RYJBDAKVFGOWIUPLCZXENHMTQS
Plain disk is the LEFT disk ((1) pt(E) = ct(T)(2) leftAlphabet: EUNGSXMLJWQDKTZABIPRHFVCYO (2) rightAlphabet: QSYJBDAKVFGOWRIUPLCZXENHMT 2) Plain disk is the RIGHT disk (2) pt(N) = ct(V)(3) leftAlphabet: VYOEUNGSXMLJWCQDKTZABIPRHF3) rightAlphabet: HMQSYJBDAKVFGTOWRIUPLCZXEN (((3) Plain disk is the RIGHT disk (3) pt(D) = ct(S)4) leftAlphabet: SMLJWCQDKTZABXIPRHFVYOEUNG (4) rightAlphabet: AKFGTOWRIUPLCVZXENHMQSYJBD (4) Plain disk is the LEFT disk (4) pt(M) = ct(K)(5) leftAlphabet: MJWCQDKTZABXILPRHFVYOEUNGS (5) rightAlphabet: FGOWRIUPLCVZXTENHMQSYJBDAK (5) Plain disk is the LEFT disk 5) pt(0) = ct(Y)(6) leftAlphabet: OUNGSMJWCQDKTEZABXILPRHFVY 6) rightAlphabet: JBAKFGOWRIUPLDCVZXTENHMQSY (6) Plain disk is the LEFT disk (6) pt(N) = ct(A)(7) leftAlphabet: NSMJWCQDKTEZAGBXILPRHFVYOU7) rightAlphabet: KFOWRIUPLDCVZGXTENHMQSYJBA ((7) Plain disk is the RIGHT disk ((7) pt(E) = ct(I)8) leftAlphabet: IPRHFVYOUNSMJLWCQDKTEZAGBX (8) rightAlphabet: NHQSYJBAKFOWRMIUPLDCVZGXTE 8) Plain disk is the RIGHT disk (8) pt(Y) = ct(F)(9) leftAlphabet: FYOUNSMJLWCQDVKTEZAGBXIPRH (9) rightAlphabet: JBKFOWRMIUPLDACVZGXTENHQSY (Final ciphertext = "NTVSKYAIF"

Here is a brief description of the first two enciphering steps.

- Before commencing enciphering
 - Align the left and right alphabets using their respective zeniths, such that that "B" in the left alphabet corresponds to "R" in the right alphabet.
- Enciphering the first plaintext letter "S"
 - The first letter in the takeoff pattern is "R", denoting that the plaintext letter should be found in the right ("R") alphabet
 - Find the plaintext letter "S" in the <u>right</u> alphabet
 - Note the corresponding ciphertext letter in the <u>left</u> alphabet, i.e., "N"
 - Permute the left and right alphabets as per the Chaocipher method (see references for exact instructions)
- Enciphering the second plaintext letter "E"
 - The second letter in the takeoff pattern is "L", denoting that the plaintext letter should be found in the left ("L") alphabet
 - Find the plaintext letter "E" in the <u>left</u> alphabet
 - Note the corresponding ciphertext letter in the <u>right</u> alphabet, i.e., "T"
 - Permute the left and right alphabets as per the Chaocipher method (see references for exact instructions)
- Continue with the remaining letters, using successive takeoff key letters to determine which alphabet to locate the plaintext letter in. When the takeoff key is exhausted, begin from the start of the key again.

When working on Exhibit 6, it is a likely consideration to believe it was enciphered using the 'advanced' Chaocipher system used in Exhibit 5.

References

[1] John F. Byrne's Chaocipher Revealed: An Historical and Technical Appraisal by Moshe Rubin, Cryptologia, Volume 35, Issue 4, October 2011. Freely accessible online at http://www.tandfonline.com/doi/abs/10.1080/01611194.2011.606751?journalCode=ucry20&

[2] Decoding Chaocipher Exhibits 2 & 3 by Esa Peuha (PDF). Retrieved April 23, 2014. Accessible online at <u>http://www.chaocipher.com/chaocipher-022.htm</u>

[3] Chaocipher Exhibit 5: History, Analysis, and Solution of Cryptologia's 1990 Challenge by Jeff Calof, Jeff Hill & Moshe Rubin, Cryptologia, Volume 38, Issue 1, January.

[4] "Chaocipher: Exhibit 5 Solution" by Jeff Calof (PDF). Retrieved 12/3/14. Accessible online at http://www.mountainvistasoft.com/chaocipher/chaocipher-023.htm

[5] Chaocipher Revealed: The Algorithm by Moshe Rubin (July 2, 2010), accessible at http://www.mountainvistasoft.com/chaocipher/ActualChaocipher/Chaocipher-Revealed-Algorithm.pdf